10,001 research outputs found

    Internal Variations in Empirical Oxygen Abundances for Giant HII Regions in the Galaxy NGC 2403

    Full text link
    This paper presents a spectroscopic investigation of 11 HII regions in the nearby galaxy NGC 2403. The HII regions are observed with a long-slit spectrograph mounted on the 2.16 m telescope at XingLong station of National Astronomical Observatories of China. For each of the HII regions, spectra are extracted at different nebular radii along the slit-coverage. Oxygen abundances are empirically estimated from the strong-line indices R23, N2O2, O3N2, and N2 for each spectrophotometric unit, with both observation- and model-based calibrations adopted into the derivation. Radial profiles of these diversely estimated abundances are drawn for each nebula. In the results, the oxygen abundances separately estimated with the prescriptions on the basis of observations and models, albeit from the same spectral index, systematically deviate from each other; at the same time, the spectral indices R23 and N2O2 are distributed with flat profiles, whereas N2 and O3N2 exhibit apparent gradients with the nebular radius. Because our study naturally samples various ionization levels which inherently decline at larger radii within individual HII regions, the radial distributions indicate not only the robustness of R23 and N2O2 against ionization variations but also the sensitivity of N2 and O3N2 to the ionization parameter. The results in this paper provide observational corroboration of the theoretical prediction about the deviation in the empirical abundance diagnostics. Our future work is planned to investigate metal-poor HII regions with measurable T_e, in an attempt to recalibrate the strong-line indices and consequently disclose the cause of the discrepancies between the empirical oxygen abundances.Comment: 16 pages, 10 figures, 5 tables; accepted for publication in The Astrophysical Journal; with a minor correction in the tex

    Characterizing Ultraviolet and Infrared Observational Properties for Galaxies. II. Features of Attenuation Law

    Full text link
    Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-beta relation), offered a widely used recipe for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies, we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Angstrom bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Angstrom bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.Comment: 25 pages, 23 figures, 5 tables; accepted for publication in The Astrophysical Journa

    A Study on the Social Practice Teaching of College Students Going to Rural Areas and Training Mandarin in Guanghui Village of the Yi Nationality in Mabian

    Get PDF
    With the deepening of rural revitalization, “Language Poverty Alleviation” is the cultural dilemma facing China’s three continents and three regions. Popularization of Putonghua concerns ethnic unity, social stability and the construction and development of socialist cause. The subject of this survey is the “Survey Report on the Status of National Common Languages and Characters in Guanghui Village of the Yi Nationality in Mabian”. Based on the social situation and the present situation of learning in Mabian County, this social practice selects 15 volunteers who majored in primary school education (undergraduate) of Geely College to go to Mabian to help the primary school students in Guanghui Village of Mabian Yi Autonomous County to carry out the teaching practice of pushing and popularizing, such as game teaching,questionnaire survey, Interviews, On-the-spot investigation, To fully understand the current situation of the left-behind children of Yi nationality in the village using the national common language. Mastering and accumulating questionnaire data and first-line sample information. analyzing the learning effect and influencing factors of the research object, which it helps the work of “village revitalization” has put forward practical improvement programmes

    5G Ultra-dense networks with non-uniform Distributed Users

    Full text link
    User distribution in ultra-dense networks (UDNs) plays a crucial role in affecting the performance of UDNs due to the essential coupling between the traffic and the service provided by the networks. Existing studies are mostly based on the assumption that users are uniformly distributed in space. The non-uniform user distribution has not been widely considered despite that it is much closer to the real scenario. In this paper, Radiation and Absorbing model (R&A model) is first adopted to analyze the impact of the non-uniformly distributed users on the performance of 5G UDNs. Based on the R&A model and queueing network theory, the stationary user density in each hot area is investigated. Furthermore, the coverage probability, network throughput and energy efficiency are derived based on the proposed theoretical model. Compared with the uniformly distributed assumption, it is shown that non-uniform user distribution has a significant impact on the performance of UDNs.Comment: 14 pages, 10 figure

    Enabling Recovery of Secure Non-Volatile Memories

    Get PDF
    Emerging non-volatile memories (NVMs), such as phase change memory (PCM), spin-transfer torque RAM (STT-RAM) and resistive RAM (ReRAM), have dual memory-storage characteristics and, therefore, are strong candidates to replace or augment current DRAM and secondary storage devices. The newly released Intel 3D XPoint persistent memory and Optane SSD series have shown promising features. However, when these new devices are exposed to events such as power loss, many issues arise when data recovery is expected. In this dissertation, I devised multiple schemes to enable secure data recovery for emerging NVM technologies when memory encryption is used. With the data-remanence feature of NVMs, physical attacks become easier; hence, emerging NVMs are typically paired with encryption. In particular, counter-mode encryption is commonly used due to its performance and security advantages over other schemes (e.g., electronic codebook encryption). However, enabling data recovery in power failure events requires the recovery of security metadata associated with data blocks. Naively writing security metadata updates along with data for each operation can further exacerbate the write endurance problem of NVMs as they have limited write endurance and very slow write operations. Therefore, it is necessary to enable the recovery of data and security metadata (encryption counters) but without incurring a significant number of writes. The first work of this dissertation presents an explanation of Osiris, a novel mechanism that repurposes error correcting code (ECC) co-located with data to enable recovery of encryption counters by additionally serving as a sanity-check for encryption counters used. Thus, by using a stop-loss mechanism with a limited number of trials, ECC can be used to identify which encryption counter that was used most recently to encrypt the data and, hence, allow correct decryption and recovery. The first work of this dissertation explores how different stop-loss parameters along with optimizations of Osiris can potentially reduce the number of writes. Overall, Osiris enables the recovery of encryption counters while achieving better performance and fewer writes than a conventional write-back caching scheme of encryption counters, which lacks the ability to recover encryption counters. Later, in the second work, Osiris implementation is expanded to work with different counter-mode memory encryption schemes, where we use an epoch-based approach to periodically persist updated counters. Later, when a crash occurs, we can recover counters through test-and-verification to identify the correct counter within the size of an epoch for counter recovery. Our proposed scheme, Osiris-Global, incurs minimal performance overheads and write overheads in enabling the recovery of encryption counters. In summary, the findings of the present PhD work enable the recovery of secure NVM systems and, hence, allows persistent applications to leverage the persistency features of NVMs. Meanwhile, it also minimizes the number of writes required in meeting this crash consistency requirement of secure NVM systems

    Design, Simulation, Fabrication and Characterization of Optical Metasurface

    Full text link
    Optical metasurface is an emerging concept in the field of nano optics, nano photonics, and silicon photonics. It is an idea of creating novel planar optical devices based on space discretization and phase reconstruction method. The targeting wavelength of optical metasurface ranges from ultraviolet to near infrared bandwidths based on its application. It is a groundbreaking approach with which people for the first time can have full control of wavefront. The control is achieved through the alteration of phase, transmission and polarization at a single plane simultaneously. This dissertation is a summary of the author’s research in the field of optical metasurface including a complete process of design, simulation, fabrication and characterization of optical metasurface. The major contribution of his study lies in visible band metalens, which is of great interest in the field of imaging and sensing.Ph.D.College of Engineering & Computer ScienceUniversity of Michiganhttps://deepblue.lib.umich.edu/bitstream/2027.42/149481/1/Mao Ye Final Dissertation.pdfDescription of Mao Ye Final Dissertation.pdf : Dissertatio

    MONOCULAR POSE ESTIMATION AND SHAPE RECONSTRUCTION OF QUASI-ARTICULATED OBJECTS WITH CONSUMER DEPTH CAMERA

    Get PDF
    Quasi-articulated objects, such as human beings, are among the most commonly seen objects in our daily lives. Extensive research have been dedicated to 3D shape reconstruction and motion analysis for this type of objects for decades. A major motivation is their wide applications, such as in entertainment, surveillance and health care. Most of existing studies relied on one or more regular video cameras. In recent years, commodity depth sensors have become more and more widely available. The geometric measurements delivered by the depth sensors provide significantly valuable information for these tasks. In this dissertation, we propose three algorithms for monocular pose estimation and shape reconstruction of quasi-articulated objects using a single commodity depth sensor. These three algorithms achieve shape reconstruction with increasing levels of granularity and personalization. We then further develop a method for highly detailed shape reconstruction based on our pose estimation techniques. Our first algorithm takes advantage of a motion database acquired with an active marker-based motion capture system. This method combines pose detection through nearest neighbor search with pose refinement via non-rigid point cloud registration. It is capable of accommodating different body sizes and achieves more than twice higher accuracy compared to a previous state of the art on a publicly available dataset. The above algorithm performs frame by frame estimation and therefore is less prone to tracking failure. Nonetheless, it does not guarantee temporal consistent of the both the skeletal structure and the shape and could be problematic for some applications. To address this problem, we develop a real-time model-based approach for quasi-articulated pose and 3D shape estimation based on Iterative Closest Point (ICP) principal with several novel constraints that are critical for monocular scenario. In this algorithm, we further propose a novel method for automatic body size estimation that enables its capability to accommodate different subjects. Due to the local search nature, the ICP-based method could be trapped to local minima in the case of some complex and fast motions. To address this issue, we explore the potential of using statistical model for soft point correspondences association. Towards this end, we propose a unified framework based on Gaussian Mixture Model for joint pose and shape estimation of quasi-articulated objects. This method achieves state-of-the-art performance on various publicly available datasets. Based on our pose estimation techniques, we then develop a novel framework that achieves highly detailed shape reconstruction by only requiring the user to move naturally in front of a single depth sensor. Our experiments demonstrate reconstructed shapes with rich geometric details for various subjects with different apparels. Last but not the least, we explore the applicability of our method on two real-world applications. First of all, we combine our ICP-base method with cloth simulation techniques for Virtual Try-on. Our system delivers the first promising 3D-based virtual clothing system. Secondly, we explore the possibility to extend our pose estimation algorithms to assist physical therapist to identify their patients’ movement dysfunctions that are related to injuries. Our preliminary experiments have demonstrated promising results by comparison with the gold standard active marker-based commercial system. Throughout the dissertation, we develop various state-of-the-art algorithms for pose estimation and shape reconstruction of quasi-articulated objects by leveraging the geometric information from depth sensors. We also demonstrate their great potentials for different real-world applications
    • …
    corecore